高级检索
当前位置: 首页 > 详情页

Application of radiomics in predicting the preoperative risk stratification of gastric stromal tumors

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China. [2]GE Healthcare, China.
出处:
ISSN:

摘要:
PURPOSE The stomach is the most common site of gastrointestinal stromal tumors (GISTs). In this study, clinical model, radiomics models, and nomogram were constructed to compare and assess the clinical value of each model in predicting the preoperative risk stratification of gastric stromal tumors (GSTs). METHODS In total, 180 patients with GSTs confirmed postoperatively pathologically were included. 70% was randomly selected from each category as the training group (n = 126), and the remaining 30% was stratified as the testing group (n = 54). The image features and texture characteristics of each patient were analyzed, and predictive model were constructed. The image features and the rad-score of the optimal radiomics model were used to establish the nomogram. The clinical application value of these models was assessed by the receiver operating characteristic (ROC) curve and decision curve analysis (DCA). The calibration of each model was evaluated by the calibration curve. RESULTS The Area Under the Curve (AUC) value of the nomogram was 0.930 (95% confidence interval [CI]: 0.886- 0.973) in the training group and 0.931 (95% CI: 0.869-0.993) in the testing group. The AUC values of the training group and the testing group calculated by the radiomics model were 0.874 (95% CI: 0.814-0.935) and 0.863 (95% CI: 0.76 5-0.960), respectively; the AUC values calculated by the clinical model were 0.871 (95% CI: 0.811-0.931) and 0.854 (95% CI: 0.76 0-0.947). CONCLUSION The proposed nomogram can accurately predict the malignant potential of GSTs and can be used as repeatable imaging markers for decision support to predict the risk stratification of GSTs before surgery noninvasively and effectively.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2022]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号