高级检索
当前位置: 首页 > 详情页

Radiomics-based analysis of CT imaging for the preoperative prediction of invasiveness in pure ground-glass nodule lung adenocarcinomas

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, No. 12 of Health Road, Shijiazhuang 050011, China. [2]GE Healthcare China, Beijing 100176, China.
出处:
ISSN:

摘要:
The purpose of the study is to investigate the performance of radiomics-based analysis in prediction of pure ground-glass nodule (pGGN) lung adenocarcinomas invasiveness using thin-section computed tomography images.A total of 382 patients surgically resected single pGGN and pathologically confirmed were enrolled in the retrospective study. The pGGN cases were divided into two groups: the noninvasive group and the invasive adenocarcinoma (IAC) group. 330 patients were randomly assigned to the training and testing cohorts with a ratio of 7:3 (245 noninvasive lesions, 85 IAC lesions), while 52 patients (30 noninvasive lesions, 22 IAC lesions) were assigned to the external validation cohort. A model, radiomics model, and combined clinical-radiographic-radiomic model were built using the LASSO and multivariate backward stepwise regression analysis on the basis of the selected and radiomics features. The area under the curve (AUC) and decision curve analysis (DCA) were used to evaluate and compare the model performance for invasiveness discrimination among the three cohorts.Three clinical-radiographic features (including age, gender and the mean CT value) and three radiomics features were selected for model building. The combined model and radiomics model performed better than the clinical-radiographic model. The AUCs of the combined model in the training, testing, and validation cohorts were 0.856, 0.859, and 0.765, respectively. The DCA demonstrated the radiomics signatures incorporating clinical-radiographic feature was clinically useful in predicting pGGN invasiveness.The proposed radiomics-based analysis incorporating the clinical-radiographic feature could accurately predict pGGN invasiveness, providing a noninvasive biomarker for the individualized and precise medical treatment of patients.© 2023. The Author(s).

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, No. 12 of Health Road, Shijiazhuang 050011, China.
通讯作者:
通讯机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, No. 12 of Health Road, Shijiazhuang 050011, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39804 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号