高级检索
当前位置: 首页 > 详情页

Preoperative assessment of high-grade endometrial cancer using a radiomic signature and clinical indicators

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China. [2]Department of Medical Imaging Center, The First Hospital of Qinhuangdao, Qinhuangdao, 066000, PR China.
出处:
ISSN:

关键词: endometrial cancer • MRI • radiomics • random forest

摘要:
Aim: To develop and validate a radiomics-based combined model (ModelRC) to predict the pathological grade of endometrial cancer. Methods: A total of 403 endometrial cancer patients from two independent centers were enrolled as training, internal validation and external validation sets. Radiomic features were extracted from T2-weighted images, apparent diffusion coefficient map and contrast-enhanced 3D volumetric interpolated breath-hold examination images. Results: Compared with the clinical model and radiomics model, ModelRC showed superior performance; the areas under the receiver operating characteristic curves were 0.920 (95% CI: 0.864-0.962), 0.882 (95% CI: 0.779-0.955) and 0.881 (95% CI: 0.815-0.939) for the training, internal validation and external validation sets, respectively. Conclusion: ModelRC, which incorporated clinical and radiomic features, exhibited excellent performance in the prediction of high-grade endometrial cancer.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
通讯作者:
通讯机构: [1]Department of Radiology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号