高级检索
当前位置: 首页 > 详情页

Exploring Contextual Relationships for Cervical Abnormal Cell Detection

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China [2]Cent South Univ, Sch Automat, Changsha 410083, Peoples R China [3]Cent South Univ, Xiangya Hosp 2, Dept Pathol, Changsha 410083, Peoples R China [4]Hebei Med Univ, Hosp 4, Dept Cytol, Shijiazhuang 050017, Peoples R China
出处:
ISSN:

关键词: Feature extraction Lesions Image segmentation Detectors Proposals Object detection Cervical cancer Cervical cytology screening contextual relationships object detection whole slide image

摘要:
Cervical abnormal cell detection is a challenging task as the morphological discrepancies between abnormal and normal cells are usually subtle. To determine whether a cervical cell is normal or abnormal, cytopathologists always take surrounding cells as references to identify its abnormality. To mimic these behaviors, we propose to explore contextual relationships to boost the performance of cervical abnormal cell detection. Specifically, both contextual relationships between cells and cell-to-global images are exploited to enhance features of each region of interest (RoI) proposal. Accordingly, two modules, dubbed as RoI-relationship attention module (RRAM) and global RoI attention module (GRAM), are developed and their combination strategies are also investigated. We establish a strong baseline by using Double-Head Faster R-CNN with a feature pyramid network (FPN) and integrate our RRAM and GRAM into it to validate the effectiveness of the proposed modules. Experiments conducted on a large cervical cell detection dataset reveal that the introduction of RRAM and GRAM both achieves better average precision (AP) than the baseline methods. Moreover, when cascading RRAM and GRAM, our method outperforms the state-of-the-art (SOTA) methods. Furthermore, we show that the proposed feature-enhancing scheme can facilitate image- and smear-level classification.

基金:

基金编号: 2021YFF1201202 62006249 2023JJ30699 2021JJ40788

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
最新[2025]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 1 区 医学:信息 2 区 计算机:跨学科应用
JCR分区:
出版当年[2023]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2024]版:
Q1 MEDICAL INFORMATICS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Cent South Univ, Sch Comp Sci & Engn, Changsha 410083, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42329 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号