高级检索
当前位置: 首页 > 详情页

Baseline 18F-FDG PET/CT radiomics for prognosis prediction in diffuse large B cell lymphoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Nuclear Medicine, The Fourth Hospital of Hebei MedicalUniversity, 12 Jiankang Road, Shijiazhuang 050011, Hebei, China. [2]HebeiProvincial Key Laboratory of Tumor Microenvironment and Drug Resistance,Shijiazhuang 050011, Hebei, China.
出处:
ISSN:

关键词: FDG PET/CT Difuse large B-cell lymphoma Risk stratifcation Prognosis Machine learning Radiomics

摘要:
Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin lymphoma in adults. Standard treatment includes chemoimmunotherapy with R-CHOP or similar regimens. Despite treatment advancements, many patients with DLBCL experience refractory disease or relapse. While baseline 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) parameters have shown promise in predicting survival, they may not fully capture lesion heterogeneity. This study aimed to assess the prognostic value of baseline 18F-FDG PET radiomics features in comparison with clinical factors and metabolic parameters for assessing 2-year progression-free survival (PFS) and 5-year overall survival (OS) in patients with DLBCL.A total of 201 patients with DLBCL were enrolled in this study, and 1328 radiomics features were extracted. The radiomics signatures, clinical factors, and metabolic parameters showed significant prognostic value for individualized prognosis prediction in patients with DLBCL. Radiomics signatures showed the lowest Akaike information criterion (AIC) value and highest Harrell's concordance index (C-index) value in comparison with clinical factors and metabolic parameters for both PFS (AIC: 571.688 vs. 596.040 vs. 576.481; C-index: 0.732 vs. 0.658 vs. 0.702, respectively) and OS (AIC: 339.843 vs. 363.671 vs. 358.412; C-index: 0.759 vs. 0.667 vs. 0.659, respectively). Statistically significant differences were observed in the area under the curve (AUC) values between the radiomics signatures and clinical factors for both PFS (AUC: 0.768 vs. 0.681, P = 0.017) and OS (AUC: 0.767 vs. 0.667, P = 0.023). For OS, the AUC of the radiomics signatures were significantly higher than those of metabolic parameters (AUC: 0.767 vs. 0.688, P = 0.007). However, for PFS, no significant difference was observed between the radiomics signatures and metabolic parameters (AUC: 0.768 vs. 0.756, P = 0.654). The combined model and the best-performing individual model (radiomics signatures) alone showed no significant difference for both PFS (AUC: 0.784 vs. 0.768, P = 0.163) or OS (AUC: 0.772 vs. 0.767, P = 0.403).Radiomics signatures derived from PET images showed the high predictive power for progression in patients with DLBCL. The combination of radiomics signatures, clinical factors, and metabolic parameters may not significantly improve predictive value beyond that of radiomics signatures alone.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Nuclear Medicine, The Fourth Hospital of Hebei MedicalUniversity, 12 Jiankang Road, Shijiazhuang 050011, Hebei, China. [2]HebeiProvincial Key Laboratory of Tumor Microenvironment and Drug Resistance,Shijiazhuang 050011, Hebei, China.
通讯作者:
通讯机构: [1]Department of Nuclear Medicine, The Fourth Hospital of Hebei MedicalUniversity, 12 Jiankang Road, Shijiazhuang 050011, Hebei, China. [2]HebeiProvincial Key Laboratory of Tumor Microenvironment and Drug Resistance,Shijiazhuang 050011, Hebei, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39766 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号