高级检索
当前位置: 首页 > 详情页

Preoperative Grading of Rectal Cancer with Multiple DWI Models, DWI-Derived Biological Markers, and Machine Learning Classifiers

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang 050000, China. [2]Central Research Institute, United Imaging Healthcare, Shanghai 201800, China.
出处:
ISSN:

关键词: diffusion weighted MRI machine learning rectal neoplasms intravoxel incoherentmotions diffusion kurtosis imaging

摘要:
Background: this study aimed to utilize various diffusion-weighted imaging (DWI) techniques, including mono-exponential DWI, intravoxel incoherent motion (IVIM), and diffusion kurtosis imaging (DKI), for the preoperative grading of rectal cancer. Methods: 85 patients with rectal cancer were enrolled in this study. Mann-Whitney U tests or independent Student's t-tests were conducted to identify DWI-derived parameters that exhibited significant differences. Spearman or Pearson correlation tests were performed to assess the relationships among different DWI-derived biological markers. Subsequently, four machine learning classifier-based models were trained using various DWI-derived parameters as input features. Finally, diagnostic performance was evaluated using ROC analysis with 5-fold cross-validation. Results: With the exception of the pseudo-diffusion coefficient (Dp), IVIM-derived and DKI-derived parameters all demonstrated significant differences between low-grade and high-grade rectal cancer. The logistic regression-based machine learning classifier yielded the most favorable diagnostic efficacy (AUC: 0.902, 95% Confidence Interval: 0.754-1.000; Specificity: 0.856; Sensitivity: 0.925; Youden Index: 0.781). Conclusions: utilizing multiple DWI-derived biological markers in conjunction with a strategy employing multiple machine learning classifiers proves valuable for the noninvasive grading of rectal cancer.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang 050000, China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Radiology, Fourth Hospital of Hebei Medical University, No.12 Jiankang Road, Shijiazhuang 050000, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39766 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号