高级检索
当前位置: 首页 > 详情页

Visualization of mitochondrial molecular dynamics during mitophagy process by label-free surface-enhanced Raman scattering spectroscopy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Sch Pharm, Key Lab Innovat Drug Dev & Evaluat, Shijiazhuang, Peoples R China [2]Hebei Med Univ, Core Facil & Ctr, Shijiazhuang, Peoples R China [3]Hebei Med Univ, Affiliated Hosp 4, Shijiazhuang, Peoples R China
出处:
ISSN:

关键词: SERS Mitochondria-targeting Label-free Mitophagy

摘要:
Background: Mitophagy is a selective way to eliminate dysfunctional mitochondria and recycle their constituents, which plays an important role in regulating and maintaining intracellular homeostasis. Real-time monitoring mitophagy process is of great importance for cellular physiological and pathological processes related to mitochondria. Howbeit, most of the current methods only focus on single-parameter detection of mitochondrial microenvironmental changes such as pH, viscosity and polarity. The mitochondrial molecular responses under mitophagy are not clear. Therefore, developing a new and simple method for molecular profiling is of great importance for accurately and comprehensively visualizing mitophagy. Results: In this work, Au NPs-based mitochondria-targeting nanoprobe was developed and the nanoprobe-based label-free surface enhanced Raman spectroscopy (SERS) method was proposed to track starvation induced mitophagy process at molecular level. The nanoprobe displayed good SERS performance and low cytotoxicity. Based on the developed strategy, the molecular response within mitochondria under mitophagy was validated. Meanwhile, the protein denaturation, conformational change, lipid degradation and DNA fragmentation within mitochondria under mitophagy were revealed for the first time, which provides molecular evidence for mitophagy. The changes in reactive oxygen species level and mitochondrial membrane potential further confirmed the damage of mitochondria. Moreover, the developed label-free SERS strategy was used to detect mitophagy in drug (cisplatin)-induced liver injury (DILI) cell model, and obvious mitophagy in DILI cells was observed. Significance: The molecular biochemical signature dynamic changes within mitochondria during mitophagy process were revealed by SERS for the first time. Moreover, compared with the current research, our study can provide new insights into mitophagy and mitophagy-involved diseases at molecular level. This study will provide new insights into the molecular mechanism of mitophagy and offer a simple and effective method for mito- chondrial molecular event monitoring in mitophagy-involved cellular processes.

基金:
语种:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 2 区 化学
小类 | 2 区 分析化学
最新[2025]版:
大类 | 2 区 化学
小类 | 2 区 分析化学
JCR分区:
出版当年[2023]版:
Q1 CHEMISTRY, ANALYTICAL
最新[2023]版:
Q1 CHEMISTRY, ANALYTICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Sch Pharm, Key Lab Innovat Drug Dev & Evaluat, Shijiazhuang, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号