高级检索
当前位置: 首页 > 详情页

An early prediction model for gestational diabetes mellitus created using machine learning algorithms

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Hosp 4, Obstetr Dept, 169 Tianshan St, Shijiazhuang 050000, Peoples R China [2]Hebei Univ Sci & Technol, Sch Informat Sci & Engn, Shijiazhuang, Hebei, Peoples R China
出处:
ISSN:

关键词: early prediction model gestational diabetes mellitus hierarchical structural analysis machine learning algorithms

摘要:
ObjectiveTo investigate high-risk factors for gestational diabetes mellitus (GDM) in early pregnancy through an analysis of demographic and clinical data, and to develops a machine-learning-based prediction model to enhance early diagnosis and intervention. MethodsA retrospective study was performed involving 942 pregnant women. A stacking ensemble (machine learning [ML]) was applied to demographic and clinical variables, creating a predictive model for GDM. Model performance was evaluated through receiver-operating characteristics (ROC) analysis, and the area under the curve (AUC) was calculated. Risk stratification was performed using quartile-based probability thresholds, and predictive accuracy was validated using an independent dataset. ResultsSignificant predictors for GDM included age, pre-pregnancy body mass index (BMI; calculated as weight in kilograms divided by the square of height in meters), history of GDM, family history of diabetes, history of fetal macrosomia, education level, history of hypertension, and gravidity. These factors, which can be collected non-invasively at the first prenatal visit, formed the basis of a robust predictive model (AUC = 0.89). The model demonstrated a strong ability to exclude GDM, at a threshold of 28.53%. ConclusionsThe machine-learning-based prediction model effectively identifies populations at high risk for GDM before invasive testing and oral glucose tolerance test, facilitating early clinical intervention and resource optimization.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 妇产科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 妇产科学
JCR分区:
出版当年[2024]版:
Q2 OBSTETRICS & GYNECOLOGY
最新[2024]版:
Q2 OBSTETRICS & GYNECOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Hosp 4, Obstetr Dept, 169 Tianshan St, Shijiazhuang 050000, Peoples R China
通讯作者:
通讯机构: [1]Hebei Med Univ, Hosp 4, Obstetr Dept, 169 Tianshan St, Shijiazhuang 050000, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42313 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号