高级检索
当前位置: 首页 > 详情页

Non-invasive liquid biopsy based on transcriptomic profiling for early diagnosis of occult peritoneal metastases in locally advanced gastric cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]The Third Department of Surgery, the Fourth Hospital of HebeiMedical University, Shijiazhuang, 050011, China. [2]Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China. [3]Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China. [4]School of Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 Jiangsu, China. [5]Department of Gastroenterology and Hepatology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002 Jiangsu, China. [6]Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, 430065 Hubei, China. [7]Department of General Surgery, Shijiazhuang People’s Hospital, Shijiazhuang, 050050 Hebei, China. [8]Department of General Surgery, Baoding Central Hospital, Baoding, 071030 Hebei, China. [9]Department of General Surgery, Hengshui People’s Hospital, Hengshui, 053099 Hebei, China. [10]Research Center and Tumor Research Institute of the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050011, China
出处:
ISSN:

摘要:
This study proposes a novel non-invasive diagnostic approach utilizing transcriptomic profiling of liquid biopsy samples for the early detection of occult peritoneal metastases in locally advanced gastric cancer (LAGC). By analyzing RNA expression patterns of cancer cells, this method identifies specific gene signatures associated with peritoneal spread, potentially offering a more sensitive and comprehensive diagnostic tool compared to conventional imaging techniques. A 4-mRNA panel (BUB1, SPC25, CT83, MMP3) integrated with clinical features was developed into a Risk Stratification Assessment (RSA) model, demonstrating superior predictive accuracy in multiple cohorts with an area under the curve (AUC) of 0.836 in training and 0.882 in validation. This approach offers a promising alternative for early diagnosis, improving treatment decisions and clinical outcomes for gastric cancer patients, while enabling a shift from tissue-based testing to non-invasive blood-based diagnostics.

基金:
语种:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
最新[2025]版:
大类 | 1 区 医学
小类 | 2 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q1 ONCOLOGY
最新[2023]版:
Q1 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]The Third Department of Surgery, the Fourth Hospital of HebeiMedical University, Shijiazhuang, 050011, China. [2]Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China. [3]Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China.
共同第一作者:
通讯作者:
通讯机构: [1]The Third Department of Surgery, the Fourth Hospital of HebeiMedical University, Shijiazhuang, 050011, China. [2]Hebei Key Laboratory of Precision Diagnosis and Comprehensive Treatment of Gastric Cancer, Shijiazhuang, 050011, China. [3]Big data analysis and mining application for precise diagnosis and treatment of gastric cancer Hebei Provincial Engineering Research Center, Shijiazhuang, 050011, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号