高级检索
当前位置: 首页 > 详情页

Classification of Deep Convolutional Neural Network in Thyroid Ultrasound Images

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Hosp 3, Shijiazhuang 050051, Hebei, Peoples R China [2]Hebei Normal Univ, Shijiazhuang 050024, Hebei, Peoples R China [3]Hebei Med Univ, Hosp 4, Shijiazhuang 050051, Hebei, Peoples R China [4]First Hosp Shijiazhuang, Shijiazhuang 050011, Hebei, Peoples R China [5]Coll Engn & Technol, Dept IT, Dindigul 629702, Tamil Nadu, India
出处:
ISSN:

关键词: Classification Convolutional Neural Network Thyroid Ultrasound Images Deep Learning

摘要:
Objective: To explore the application of deep convolutional neural network theory in thyroid ultrasound image system analysis and eigenvalue extraction to help medically predict the patient's condition. Methods: The thyroid color ultrasound image dataset of our hospital was selected as the training and test samples. The comparison experiment was designed in the deep convolutional neural network learning framework to test the feasibility of the method. Results: Image information classification based on deep neural network algorithm can predict thyroid nodule lesions well, and has good accuracy in the classification test of benign and malignant nodules. Conclusion: The clinical application of deep learning method and thyroid ultrasound image feature value extraction and system analysis can improve the accuracy of clinical thyroid benign and malignant classification.

语种:
被引次数:
WOS:
中科院分区:
出版当年[2020]版:
大类 | 4 区 医学
小类 | 4 区 数学与计算生物学 4 区 核医学
最新[2025]版:

影响因子: 最新[2024版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Hosp 3, Shijiazhuang 050051, Hebei, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42329 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号