高级检索
当前位置: 首页 > 详情页

HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 自然指数

机构: [1]College of Food Science & Biology, Hebei University of Science and Technology, Shijiazhuang, China [2]Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China [3]Department of Pathology and Laboratory Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan [4]Department of Pathology, Kanazawa Medical University Hospital, Uchinada, Ishikawa, Japan
出处:
ISSN:

摘要:
Endocrine therapy-resistant estrogen receptor-positive (ER+) breast cancer cells often exhibit an augmented capacity to maintain endoplasmic reticulum (EnR) homeostasis under adverse conditions. Oncoprotein hepatitis B X-interacting protein (HBXIP) is a known transcriptional coactivator that promotes cancer development. However, it is unclear whether HBXIP participates in maintaining EnR homeostasis and promoting drug-resistance in ER+ breast cancer. Here, we report that tamoxifen-resistant (TmaR) breast cancer cells exhibit increased expression of HBXIP, which acts as an inactivator of the unfolded protein response (UPR) to diminish tamoxifen (TAM)-induced EnR stress. We show that HBXIP deficiency promotes EnR-associated degradation (ERAD), enhances UPR-element (UPRE) reporter activity and cellular oxidative stress, and ultimately attenuates the growth of TmaR cells in vitro and in vivo. Mechanistically, we demonstrate that HBXIP acts as a chaperone of UPR transducer inositol-requiring enzyme 1a (IRE1α) and diminishes production of reactive oxygen species (ROS) in TamR breast cancer cells. Upon loss of HBXIP expression, TAM treatment hyperactivates IRE1α and its downstream proapoptotic pathways and simultaneously induces accumulation of intracellular ROS. This elevated ROS programmatically activates the other two branches of the UPR, mediated by PKR-like ER kinase (PERK) and activating transcription factor 6α (ATF6α). Clinical investigations and Kaplan-Meier plotter analysis revealed that HBXIP is highly expressed in TamR breast cancer tissues. Furthermore, reinforced HBXIP expression associated with a high recurrence and poor relapse-free survival rates in tamoxifen monotherapy ER+ breast cancer patients. These findings indicate that HBXIP is a novel regulator of EnR homeostasis and a potential target for TamR breast cancer therapy.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2022]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
最新[2025]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学
JCR分区:
出版当年[2022]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2024]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]College of Food Science & Biology, Hebei University of Science and Technology, Shijiazhuang, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42314 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号