高级检索
当前位置: 首页 > 详情页

HMGB1 induces radioresistance through PI3K/AKT/ATM pathway in esophageal squamous cell carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Dept Radiat Oncol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China
出处:
ISSN:

关键词: ESCC HMGB1 Radioresistance Apoptosis Cell cycle

摘要:
Background To explore the effect of HMGB1 on the radio-sensitivity of esophageal cancer cells through regulating the PI3K/Akt/ATM pathway. Methods and results We observed the expression of HMGB1 and p-ATM in biopsies of esophageal cancer patients with immunohistochemical staining. Western blot and RT-qPCR were applied to detect the protein and RNA related to PI3K/Akt/ATM pathway, respectively. In addition, we inhibited the PI3K/Akt pathway with ly294002 and activated it with IGF1, then we explored the invasion, proliferation ability, and apoptosis of esophageal cancer cells in vitro by transwell, CCK8 assay, and flow cytometry respectively. In vivo, xenograft tumor model was established in nude mice to study the effect of HMGB1 on radioresistance via PI3K/AKT/ATM Signaling Pathway. The survival rate in patients with single positive/double negative expression of HMGB1 and p-ATM was significantly higher than in those with both positive expression of HMGB1 and p-ATM, the depletion of HMGB1 combined with ly294002 significantly inhibited cell proliferation and invasion ability, meanwhile, the addition of IGF1 reversed it. Meanwhile, depletion of HMGB1 and ly294002 promoted apoptosis and arrested the cancer cells in G0/G1 cell cycle with the decreased expression of Cyclin D1 and CDK4 and improved P16. We further validated these results in vivo, the application of HMGB1 silencing promoted apoptosis of xenograft tumors after radiation, especially combined with pathway inhibitor ly294002. Conclusions Esophageal cancer patients with high expression of HMGB1 and p-ATM have a poor prognosis after chemo-radiotherapy. Down-regulation of HMGB1 may promote the radio-sensitivity of esophageal cancer cells through regulating PI3K/Akt/ATM pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2022]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学
最新[2025]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学
JCR分区:
出版当年[2022]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Dept Radiat Oncol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China
通讯作者:
通讯机构: [1]Hebei Med Univ, Dept Radiat Oncol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号