高级检索
当前位置: 首页 > 详情页

Prediction of occult peritoneal metastases or positive cytology using CT in gastric cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Dept Surg 3, Hosp 4, Shijiazhuang 050011, Hebei, Peoples R China [2]Hebei Key Lab Precis Diag & Comprehens Treatment G, Shijiazhuang, Peoples R China
出处:
ISSN:

关键词: Gastric cancer Peritoneum Cytology Neoplasm metastasis Multidetector computed tomography

摘要:
ObjectiveAccurate prediction of preoperative occult peritoneal metastasis (OPM) is critical to selecting appropriate therapeutic regimen for gastric cancer (GC). Considering the clinical practicability, we develop and validate a visible nomogram that integrates the CT images and clinicopathological parameters for the individual preoperative prediction of OPM in GC.MethodsThis retrospective study included 520 patients who underwent staged laparoscopic exploration or peritoneal lavage cytology (PLC) examination. Univariate and multivariate logistic regression results were used to screen model predictors and construct nomograms of OPM risk. The performance of the model was detected by using ROC, accuracy, and C-index. The bootstrap resampling method was considered internal validation of the model. The Delong test was used to evaluate the difference in AUC between the two models.ResultsGrade 2 mural stratification, tumor thickness, and the Lauren classification diffuse were significant predictors of OPM (p < 0.05). The nomogram of these three factors (compared with the original model) showed a higher predictive effect (p < 0.001). The area under the curve (AUC) of the model was 0.830 (95% CI 0.788-0.873), and the internally validated AUC of 1000 bootstrap samples was 0.826 (95% CI 0.756-0.870). The sensitivity, specificity, and accuracy were 76.0%, 78.8%, and 78.3%, respectively.ConclusionsCT phenotype-based nomogram demonstrates favorable discrimination and calibration, and it can be conveniently used for preoperative individual risk rating of OPM in GC.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Dept Surg 3, Hosp 4, Shijiazhuang 050011, Hebei, Peoples R China [2]Hebei Key Lab Precis Diag & Comprehens Treatment G, Shijiazhuang, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Hebei Med Univ, Dept Surg 3, Hosp 4, Shijiazhuang 050011, Hebei, Peoples R China [2]Hebei Key Lab Precis Diag & Comprehens Treatment G, Shijiazhuang, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42329 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号