高级检索
当前位置: 首页 > 详情页

Preoperative prediction of Lauren classification in gastric cancer: a radiomics model based on dual-energy CT iodine map

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China. [2]Department of Radiology and Nuclear Medicine, The First Hospital of Hebei Medical University, No. 89, Donggang Road, Shijiazhuang, 050031, Hebei Province, People's Republic of China. [3]Siemens Healthineers Ltd., 7, Wangjing Zhonghuan Nanlu, Beijing, 100102, People's Republic of China
出处:
ISSN:

关键词: Gastric cancer Lauren classification Dual-energy CT Iodine map Radiomics

摘要:
To investigate the value of a radiomics model based on dual-energy computed tomography (DECT) venous-phase iodine map (IM) and 120 kVp equivalent mixed images (MIX) in predicting the Lauren classification of gastric cancer.A retrospective analysis of 240 patients undergoing preoperative DECT and postoperative pathologically confirmed gastric cancer was done. Training sets (n = 168) and testing sets (n = 72) were randomly assigned with a ratio of 7:3. Patients are divided into intestinal and non-intestinal groups. Traditional features were analyzed by two radiologists, using logistic regression to determine independent predictors for building clinical models. Using the Radiomics software, radiomics features were extracted from the IM and MIX images. ICC and Boruta algorithm were used for dimensionality reduction, and a random forest algorithm was applied to construct the radiomics model. ROC and DCA were used to evaluate the model performance.Gender and maximum tumor thickness were independent predictors of Lauren classification and were used to build a clinical model. Separately establish IM-radiomics (R-IM), mixed radiomics (R-MIX), and combined IM + MIX image radiomics (R-COMB) models. In the training set, each radiomics model performed better than the clinical model, and the R-COMB model showed the best prediction performance (AUC: 0.855). In the testing set also, the R-COMB model had better prediction performance than the clinical model (AUC: 0.802).The R-COMB radiomics model based on DECT-IM and 120 kVp equivalent MIX images can effectively be used for preoperative noninvasive prediction of the Lauren classification of gastric cancer.The radiomics model based on dual-energy CT can be used for Lauren classification prediction of preoperative gastric cancer and help clinicians formulate individualized treatment plans and assess prognosis.© 2023. The Author(s).

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China.
共同第一作者:
通讯作者:
通讯机构: [1]Department of Computed Tomography and Magnetic Resonance, Fourth Hospital of Hebei Medical University, No. 12, JianKang Road, Shijiazhuang, 050010, Hebei Province, People's Republic of China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42313 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号