高级检索
当前位置: 首页 > 详情页

Lipid core-shell nanoparticles co-deliver FOLFOX regimen and siPD-L1 for synergistic targeted cancer treatment

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China. [2]Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. [3]Department of Immuno-oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, China.
出处:
ISSN:

关键词: Lipid nanoparticles FOLFOX RNA interference therapy Chemo-immunotherapy Immunogenic cell death

摘要:
FOLFOX regimen, composed of folinic acid, 5-fluorouracil (5-FU) and oxaliplatin (OXP), has been used as clinical standard therapeutic regimen in treatments of colorectal cancer (CRC) and esophageal squamous cell carcinoma (ESCC). To further improve its therapeutic outcomes, FOLFOX was combined with anti-PD-1 antibody to form an advanced chemo-immune combination strategy, which has been proven more efficient in controlling cancer progression and prolonging patients' survival in various clinical trials. However, bad tumor accumulation, relative high toxicity, numerous treatment cycles with high fees and low compliance as well as drug resistance seriously limit the prognosis of FOLFOX regimen. The "all-in-one" formulations, which could precisely delivery multidrug regimen into tumor sites and cells, showed a promising application prospect for targeted drug delivery as well as reducing side effects. However, the design and preparation of the "all-in-one" formulation with high drug encapsulation efficiencies for all drugs was still challenging. Herein, a lipid core-shell nanoparticle codelivery platform was designed for simultaneous encapsulation of variant FOLFOX composed of miriplatin (MiPt), 5-Fluoro-2'-deoxyuridine 5'-monophosphate (FdUMP), calcium folinate (CF) and PD-L1 siRNA (siPD-L1) with high efficiencies, and their synergistic anti-tumor mechanisms were studied, respectively. MiPt, a precursor of OXP, was validated capable of inducing efficient immunogenic cell death (ICD) in this work. Additionally, ICD-mediated release of damage associated molecular patterns functionalized synergistically with PD-L1 silence by siPD-L1 to overcome chemoresistance, reverse suppressive tumor microenvironment and recruit more CD8+ T cells. FdUMP, as the intracellular active form of 5-FU, could induce large amounts of reactive oxygen species to enhance the ICD. CF worked as the sensitizer of FdUMP. The enhanced long-term anti-tumor effect of the prepared "all-in-one" formulation compared to free drug regimen and other controls, was verified in heterotopic CRC mice models and ESCC mice models, providing new thoughts for researchers and showing a promising prospect of translation into clinical applications.Copyright © 2024. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 1 区 医学
小类 | 1 区 药学 2 区 化学:综合
最新[2025]版:
大类 | 1 区 医学
小类 | 1 区 药学 2 区 化学:综合
JCR分区:
出版当年[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 PHARMACOLOGY & PHARMACY
最新[2024]版:
Q1 CHEMISTRY, MULTIDISCIPLINARY Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, International Joint Laboratory of Ocular Diseases, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42313 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号