高级检索
当前位置: 首页 > 详情页

Artificial intelligence for assisted HER2 immunohistochemistry evaluation of breast cancer: A systematic review and meta-analysis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China [2]Medical Affairs Department, Betrue AI Lab, Guangzhou 510700, China
出处:
ISSN:

关键词: Breast cancer HER2 Immunohistochemistry Artificial intelligence

摘要:
Accurate assessment of HER2 expression in tumor tissue is crucial for determining HER2-targeted treatment options. Nevertheless, pathologists' assessments of HER2 status are less objective than automated, computer-based evaluations. Artificial Intelligence (AI) promises enhanced accuracy and reproducibility in HER2 interpretation. This study aimed to systematically evaluate current AI algorithms for HER2 immunohistochemical diagnosis, offering insights to guide the development of more adaptable algorithms in response to evolving HER2 assessment practices. A comprehensive data search of the PubMed, Embase, Cochrane, and Web of Science databases was conducted using a combination of subject terms and free text. A total of 4994 computational pathology articles published from inception to September 2023 identifying HER2 expression in breast cancer were retrieved. After applying predefined inclusion and exclusion criteria, seven studies were selected. These seven studies comprised 6867 HER2 identification tasks, with two studies employing the HER2-CONNECT algorithm, two using the CNN algorithm, one with the multi-class logistic regression algorithm, and two using the HER2 4B5 algorithm. AI's sensitivity and specificity for distinguishing HER2 0/1+ were 0.98 [0.92-0.99] and 0.92 [0.80-0.97] respectively. For distinguishing HER2 2+, the sensitivity and specificity were 0.78 [0.50-0.92] and 0.98 [0.93-0.99], respectively. For HER2 3+ distinction, AI exhibited a sensitivity of 0.99 [0.98-1.00] and specificity of 0.99 [0.97-1.00]. Furthermore, due to the lack of HER2-targeted therapies for HER2-negative patients in the past, pathologists may have neglected to distinguish between HER2 0 and 1+, leaving room for improvement in the performance of artificial intelligence (AI) in this differentiation. AI excels in automating the assessment of HER2 immunohistochemistry, showing promising results despite slight variations in performance across different HER2 status. While incorporating AI algorithms into the pathology workflow for HER2 assessment poses challenges in standardization, application patterns, and ethical considerations, ongoing advancements suggest its potential as a widely effective tool for pathologists in clinical practice in the near future.Copyright © 2024 Elsevier GmbH. All rights reserved.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 3 区 病理学
最新[2025]版:
大类 | 4 区 医学
小类 | 3 区 病理学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 PATHOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Department of Pathology, The Fourth Hospital of Hebei Medical University, No. 12 Jiankang Road, Shijiazhuang, Hebei 050011, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号