高级检索
当前位置: 首页 > 详情页

Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Dept Pathol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China [2]Tencent AI Lab, Tencent Binhai Bldg,33,Haitian Second Rd, Shenzhen 518054, Guangdong, Peoples R China
出处:
ISSN:

关键词: Artificial intelligence-assisted microscope Breast cancer HER2

摘要:
The level of human epidermal growth factor receptor-2 (HER2) protein and gene expression in breast cancer is an essential factor in judging the prognosis of breast cancer patients. Several investigations have shown high intraobserver and interobserver variability in the evaluation of HER2 staining by visual examination. In this study, we aim to propose an artificial intelligence (AI)-assisted microscope to improve the HER2 assessment accuracy and reliability. Our AI-assisted microscope was equipped with a conventional microscope with a cell-level classification-based HER2 scoring algorithm and an augmented reality module to enable pathologists to obtain AI results in real time. We organized a three-round ring study of 50 infiltrating duct carcinoma not otherwise specified (NOS) cases without neoadjuvant treatment, and recruited 33 pathologists from 6 hospitals. In the first ring study (RS1), the pathologists read 50 HER2 whole-slide images (WSIs) through an online system. After a 2-week washout period, they read the HER2 slides using a conventional microscope in RS2. After another 2-week washout period, the pathologists used our AI microscope for assisted interpretation in RS3. The consistency and accuracy of HER2 assessment by the AI-assisted microscope were significantly improved (p < 0.001) over those obtained using a conventional microscope and online WSI. Specifically, our AI-assisted microscope improved the precision of immunohistochemistry (IHC) 3 + and 2 + scoring while ensuring the recall of fluorescent in situ hybridization (FISH)-positive results in IHC 2 + . Also, the average acceptance rate of AI for all pathologists was 0.90, demonstrating that the pathologists agreed with most AI scoring results.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 病理学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 病理学
JCR分区:
出版当年[2021]版:
Q2 PATHOLOGY
最新[2023]版:
Q1 PATHOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Dept Pathol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Hebei Med Univ, Dept Pathol, Hosp 4, 12 Jiankang Rd, Shijiazhuang 050011, Hebei, Peoples R China [2]Tencent AI Lab, Tencent Binhai Bldg,33,Haitian Second Rd, Shenzhen 518054, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号