高级检索
当前位置: 首页 > 详情页

Development and validation of a clinical prediction model for blastocyst formation during IVF/ICSI-ET

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Dept Reprod Med, Hosp 4, Shijiazhuang, Peoples R China [2]Hebei Med Univ, Dept Orthopaed Surg, Hosp 3, Shijiazhuang, Peoples R China
出处:
ISSN:

关键词: in vitro fertilization clinical prediction model blastocyst formation cleavage embryos nomogram

摘要:
Purpose This study aims to create and validate a clinical model that predict the probability of blastocyst formation in IVF/ICSI-ET cycles.Methods This study employed a retrospective methodology, gathering data from 4961 cleavage-stage embryos that cultured in the reproductive center's of the Fourth Hospital of Hebei Medical University between June 2020 and March 2024. 3472 were in the training set and 1489 were in the validation set when it was randomly split into the training set and validation set in a 7:3 ratio. The study employed both univariate and multivariate logistic regression analysis to determine the factors those influence in the process of blastocyst formation. Based on the multiple regression model, a predictive model of blastocyst formation during IVF was created. The calibration and decision curves were used to assess the effectiveness and therapeutic usefulness of this model.Results The following factors independently predicted the probability of blastocyst formation: the method of insemination, number of oocytes retrieved, pronuclear morphological score, the number of cleavage ball, cleavage embryo symmetry, fragmentation rate and morphological score and basal P levels of female. The receiver operating characteristic curve's area under the curve (AUC) in the training set is 0.742 (95% CI: 0.724,0.759), while the validation set's AUC is 0.729 (95% CI: 0.703,0.755), indicating a rather high clinical prediction capacity.Conclusion Our generated nomogram has the ability to forecast the probability of blastocyst formation in IVF, hence can assist clinical staff in making informed decisions.

语种:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
JCR分区:
出版当年[2024]版:
Q1 ENDOCRINOLOGY & METABOLISM
最新[2024]版:
Q1 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Dept Reprod Med, Hosp 4, Shijiazhuang, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:42329 今日访问量:0 总访问量:1365 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号