高级检索
当前位置: 首页 > 详情页

The use of mammography-based radiomics nomograms for the preoperative prediction of the histological grade of invasive ductal carcinoma

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Hosp 4, Dept Radiol, Shijiazhuang 050011, Peoples R China [2]GE Healthcare China, Tongji South Rd 1, Beijing 100176, Peoples R China
出处:
ISSN:

关键词: Breast cancer Neoplasm grading Radiomics Nomogram Invasive ductal carcinoma grade

摘要:
BackgroundAccurate prediction of the grade of invasive ductal carcinoma (IDC) before treatment is vital for individualized therapy and improving patient outcomes. This study aimed to develop and validate a mammography-based radiomics nomogram that would incorporate the radiomics signature and clinical risk factors in the preoperative prediction of the histological grade of IDC.MethodsThe data of 534 patients from our hospital with pathologically confirmed IDC (374 in the training cohort and 160 in the validation cohort) were retrospectively analyzed. A total of 792 radiomics features were extracted from the patients' craniocaudal and mediolateral oblique view images. A radiomics signature was generated using the least absolute shrinkage and selection operator method. Multivariate logistic regression was adopted to establish a radiomics nomogram, the utility of which was evaluated using a receiver-operating characteristic curve, calibration curve, and decision curve analysis (DCA).ResultsThe radiomics signature was found to have a significant correlation with histological grade (P < 0.01), but the efficacy of the model is limited. The radiomics nomogram, which incorporated the radiomics signature and spicule sign into mammography, showed good consistency and discrimination in both the training cohort [area under the curve (AUC) = 0.75] and the validation cohort (AUC = 0.75). The calibration curves and DCA demonstrated the clinical usefulness of the proposed radiomics nomogram model.ConclusionsA radiomics nomogram based on the radiomics signature and spicule sign can be used to predict the histological grade of IDC and assist in clinical decision-making for patients with IDC.

语种:
被引次数:
WOS:
PubmedID:
中科院分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 4 区 肿瘤学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q3 ONCOLOGY
最新[2023]版:
Q3 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Hosp 4, Dept Radiol, Shijiazhuang 050011, Peoples R China
通讯作者:
通讯机构: [1]Hebei Med Univ, Hosp 4, Dept Radiol, Shijiazhuang 050011, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号