高级检索
当前位置: 首页 > 详情页

Multivariable model to predict breast cancer in non-mass enhancement lesions: a study on contrast-enhanced mammography

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Hebei Med Univ, Hosp 1, Dept Radiol & Nucl Med, Shijiazhuang, Peoples R China [2]Hebei Med Univ, Hosp 4, Dept Radiol, Shijiazhuang, Peoples R China [3]Hebei Med Univ, Hosp 1, Dept Med Serv Div, Shijiazhuang, Peoples R China [4]Hebei Med Univ, Hosp 2, Dept Med Imaging, Shijiazhuang, Peoples R China
出处:
ISSN:

关键词: Breast Mammography Contrast media Calcification

摘要:
Background To explore morphology and enhancement features of malignant non-mass enhancement (NME) lesions in contrast-enhanced mammography (CEM), and to develop a multivariable model that can accurately predict the probability of malignancy in NME lesions. Methods A total of 162 patients with 206 NME lesions were enrolled. The ratio of 7:3 was randomly divided into a training data set and a test data set. Differences between benign and malignant NME diseases were compared using statistical analysis in the training data set. A logistic regression analysis was used to develop a multivariable model for predicting the probability of malignancy in the training data set. The predictive value of the model was assessed by calculating the area under the curve (AUC) in both training and test data sets. Results The incidence of malignancy was higher in cases with malignant microcalcification (32.35%), segmental and linear distribution (55.88%), clumped and clustered ring enhancement pattern (70.59%), and Type III curve (64.71%) (all p < 0.002). The sensitivity, specificity, and AUC of the multivariable model in the training data set and the test data set were 79.41-80.77%, 94.44-97.37%, and 0.920-0.946, respectively. Conclusions When combining microcalcification and enhancement features, the multivariable model for CEM demonstrated acceptable sensitivity and high specificity in predicting malignant NME lesions.

基金:
语种:
WOS:
PubmedID:
中科院分区:
出版当年[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2025版] 出版当年五年平均 出版前一年[2024版]

第一作者:
第一作者机构: [1]Hebei Med Univ, Hosp 1, Dept Radiol & Nucl Med, Shijiazhuang, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:39770 今日访问量:0 总访问量:1333 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 河北医科大学第四医院 技术支持:重庆聚合科技有限公司 地址:河北省石家庄市健康路12号